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presence of forests on more than 70% of its surface, as well as its ideal climatic
circumstances, this area is severely damaged by wildfires. The dataset of the
mapped fire perimeters, covering a 21-year period (1997-2017), and several geo-
environmental predisposing factors are considered for assessing susceptibility (i.e.,
derivatives, altitude, land cover, road network, and vegetation type). Additionally,
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Spatial distribution of burned areas during the winter (on the top) and
summer season (on the bottom) in the Liguria region (ltaly) during the
period 1997-2017.

Neighbouring method
For each pixel, a Moore neighbourhood of order 2 (resulting in 24 surrounding pixels) was evaluated. Conclusion Acknowled gement
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Example of neighbouring vegetation Overall, this study demonstrates the efficacy of machine learning techniques in understanding and predicting wildfire am grateful to mention that part of this work has been published in Geosciences journal of MDPI
susceptibility, offering a valuable contribution to the field of environmental risk assessment and management. (doi: 10.3390/geosciences12110424).

crops_d
dem

Winter ves type
O.IOO 0.I05 0.I10 0.I15 0.I20 O.I25 0.05 0.10 0.15 0.20 0.25

machine learning showcased its ability to leverage general predisposing factors and explore interactions, overcoming

potential limitations associated with broad classes of land use. The models proved to be robust and accurate in

predicting future events, even in scenarios where wildfires were not part of the training process. Decision-makers in
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